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Generalized Ratio-Product cum Regression Variance Estimator
in Two-Phase Sampling

Isah Muhammad1,2

This study develops a flexible and efficient generalized ratio-product cum regression-
type estimator of population variance utilizing auxiliary variable in two-phase sam-
pling that incorporates the properties of ratio-type and product-type estimators. The
properties of the estimator were derived using first order approximation. The theoret-
ical conditions under which the precision and the flexibility of the estimator is better
than some classical estimators are also provided. Empirical evidence from five real
datasets suggests that the proposed estimator outperforms the classical variance, ra-
tio variance, product, and exponential ratio type estimators in terms of precision and
efficiency. The estimator can be utilized to provide better variance estimates for var-
ious phenomena such as inflation variation, exchange rate variation and standard of
living variation for better policymaking.
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1. Introduction
Estimation of population variance is an important issue which has been discussed by
many experts engaged in sampling experiments. For instance, the variation of eco-
nomic variables such as inflation and exchange rates over the past years is required
to develop and implement a better policy. In agriculture, the production variation of
crop is required for further planning while in manufacturing industries and pharma-
ceutical laboratories, the variability of their products is a necessity for their quality
control (Muhammad et al., 2022). In sampling experiments, the precision of the pop-
ulation characteristics estimation such as; mean, variance and sum, increases when
the auxiliary information is utilized (Muhammad et al., 2022; Oyeyemi et al.,2023;
Audu et al., 2023; Muhammad et al., 2023; Zakari & Muhammad, 2022; Zakari et
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al., 2023). Various approaches of ratio, product and regression methods of estima-
tion have been widely utilized where supplementary information is available. The
strategy of linear transformation of the auxiliary variable has been utilized in the
literature by various researchers in developing mixtures of ratio estimators of pop-
ulation mean, total and variance (Mishra et al., 2019 and Muhammad et al., 2021).
Thus, exponential estimators of population variance have been extensively discussed
in literature (Isaki, 1983; Singh et al., 2009; Shabbir & Gupta, 2007). Similarly, the
strategy of exponentiation has been considered by various researchers in developing
new estimators under simple random sampling and stratified random sampling which
proved to be more efficient than the ordinary estimators. In sample survey, when the
population variance of the secondary character is not available, the two-phase sam-
pling scheme can be used in obtaining an enhanced estimator rather than the single
sampling method (Neyman, 1938).

The limitations of the usual variance ratio and variance regression estimators can
be handled by ratio-regression-type estimators and some developments was made
including Shabbir and Gupta (2007) that developed an estimator by combining the
concept of Isaki (1983) classical regression estimator and ratio exponential type esti-
mator. Yadav et al. (2015) proposed a regression-ratio-type exponential estimator by
combining Isaki (1983), Singh et al. (2009) and Bahl and Tuteja (1991) estimators.
Mishra et al. (2019) proposed a class of log-product type exponential estimators.

In sampling experiments, it is well known that ratio-type estimators cannot provide
better estimates in a situation where the relationship between the variable of inter-
est and auxiliary variable is negative, while product-type estimators cannot provide
better estimates in a situation where the relationship is positive (Isaki, 1983). Also
the bias of the estimators is still extreme which may lead to over estimation or under
estimation of population characteristics. To address these problems, this study under
two-phase sampling suggests a new generalized ratio-product cum regression-type
estimator with some special classes that provide efficient and precise estimation of
population characteristics. The study also derives the properties and theoretical effi-
ciency conditions of the proposed estimator and compare its performance with those
of the classical estimators using real datasets based on the criteria of mean square
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error and percentage relative efficiency.

The rest of the study is structured as follows: Section 2 presents notations and re-
viewed relevant literature, while the data used in this study and methodology are
presented in Section 3. The empirical results are discussed in Section 4 and Section
5 presents the conclusion and policy recommendations.

2. Literature Review
2.1 Empirical Overview
Isaki (1983) proposed ratio and regression estimators of population variance in two-
phase sampling, the mean square error of the proposed estimators up to the first
order of approximation were obtained. The study used the criterion of mean square
error and percentage relative efficiency in comparing the efficiency of the proposed
and existing estimators. In the work of Singh et al. (1988), a two-phase sampling
scheme was considered in developing difference-type estimator to provide precise
and efficient population characteristics such as; variance and mean. The efficiency of
the developed difference-type estimator was compared using real datasets based on
the criteria of bias, minimum mean square error and percentage relative efficiency.
Ahmed et al. (2003) utilized the supplementary information and proposed class of
two-phase estimators. The performances of the suggested estimators and other exist-
ing estimators were studied using real datasets based on bias and mean square error.

Shabbir and Gupta (2007) considered the work of Singh et al. (1988) and proposed
a new estimator of two-phase sampling by applying exponential transformation ap-
proach. They derived the bias and mean square error of the estimator and compared
it with some available estimators in the literature. Mishra et al. (2019) employed the
log-type transformation approach and proposed a class of product exponential-type
estimators for the estimation of population variance under Double Sampling Scheme.
They used first order of approximation and derived the bias and mean square error
of their estimators. By using real datasets they found that their estimators have min-
imum biases and mean square errors. A two-phase generalized ratio-type variance
estimator was also suggested by Sukhatme (1962), where the properties of the sug-
gested estimator were extensively derived and the efficiency of the estimator was
assessed using real datasets.
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In a situation where there is non-response problem and the population has diverse
features, Singh et al. (2020) proposed a class of new variance estimators and derived
their properties using first order of approximation. The criteria of bias and mean
square error were used to assess the efficiency of the proposed estimators and exist-
ing estimators. Cochran (1977) provided some basic information for two-phase sam-
pling. The estimators for the population variance considering a supplementary aux-
iliary variable have been discussed in literature (Grover, 2010; Upadhaya & Singh,
1999; Ahmed et al., 2000; Singh & Singh, 2001; Al-Jararha & Ahmed, 2002; Ahmed
et al., 2003; Kadilar & Cingi, 2006; Bahl & Tuteja, 1991; Upadhyaya et al., 2004;
Singh & Solanki, 2013; Swain, 2015; Subramani & Kumarapandiyan, 2015; Yakub
& Shabbir, 2016; Shabbir & Gupta, 2007; Singh & Malik, 2014; Yadav et al., 2015;
Yadav & Kadilar, 2014; Zakari & Muhammad, 2023).

The bias of the aforementioned estimators are extreme which may lead to over es-
timation or under estimation. The generalized estimator in this study possesses the
minimum bias and mean square error and provides better estimates when the rela-
tionship between the variable of interest and auxiliary variable is either positive or
negative, and this could make the proposed estimator more flexible and better.

3.0 Data and Methodology
The performance of the developed generalized estimator over some existing estima-
tors is measured empirically based on the criteria of bias, mean square error, and
percentage relative efficiency. The analysis is carried out using R statistical package.

3.1 Data
Assessments based on the flexibility and efficiency of the classes of developed gen-
eralized estimator with some existing population variance estimators are carried out
using five real datasets including those used by Cochran (1977) and Sarjinder (2003)
and those sourced from CBN Statistical Bulletin (2010; 2014) and CBN Annual Re-

ports.

Population I: Cochran (1977);

y: the number of persons in the city;

x: the number of rooms in the city.

Population II: CBN Statistical Bulletin(2010);

76



CBN Journal of Applied Statistics Vol. 14 No. 2 (December 2023) 73-101

y: average annual exchange rate in Nigeria from 1960-2010;

x: average annual inflation rate in Nigeria from 1960-2010.

Population III: CBN Statistical Bulletin(2014);

y: Nigerian monthly average crude oil price from 2006-2010;

x: Nigerian monthly average crude oil production from 2006-2010.

Population IV: CBN Statistical Bulletin(2014);

y: Nigerian monthly average crude oil price from 2010-2014;

x: Nigerian monthly average crude oil production from 2010-2014.

Population V: Sarjinder (2003);

y: duration of sleep (in minutes);

x: age (in years) of the persons.

Hence, the summary statistics obtained from datasets are presented in Table 1.

Table 1: Summary Statistics of the Datasets
Parameters Dataset I Dataset II Dataset III Dataset IV Dataset V
N 100 63 60 60 30
n
′

85 35 37 40 25
N 10 12 15 10 10
S2

y 214.690 12378.571 411.924 638.305 3582.582
S2

x 56.761 225.912 0.034 0.017 85.237
ρxy 0.956 0.805 -0.096 0.465 -0.855
β ∗

2y 2.239 4.507 4.421 2.765 2.579
β ∗

2x 2.252 6.758 3.726 2.389 2.164
λ ∗

22 1.543 0.349 1.180 0.915 1.930
where N is the size of the population; n′ is the size of the preliminary sample; n is size of the second
sample; S2

x and S2
y represent the variances of the study variable and the auxiliary character, respec-

tively; ρxy is the correlation coefficient between the variables; β ∗
2y and β ∗

2x are the population coeffi-
cient of kurtosis of the study variable y and the auxiliary variable x, respectively; λ ∗

22 is the population
coefficient of covariance between the study and auxiliary variables (Mishra et al. 2019).

3.2 Symbols, Nomenclature and Related Estimators
Consider U = U1, , , , , ,UN to be a finite population of size N and let (yi,xi) be the
value of the variable of interest, Y, and the auxiliary character, X, on ith unit, Ui, (i =

1, . . .N). Let Y and X be means obtained from population of the variable of inter-
est, Y, and the secondary character, X, respectively. Neyman (1938) highlighted that
when the population characteristics such as; mean X and variance S2

x of the auxiliary
character are unknown, a two-phase sampling scheme is used to estimate population
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variance. In this study, a two-phase sampling scheme under simple random sampling
is employed, where the first phase sample S′(S′ ⊂ U) of a fixed size n′ is drawn to
measure only on the auxiliary variable X in order to formulate a good estimate of
a population mean, X , and population variance, S2

x , respectively. The second phase
sample S(S ⊂ S′) of a fixed size n is drawn from the first sample to measure the vari-
able of interest, y, and auxiliary variable character, x, respectively. Furthermore, the
following two-phase notation and formulaes were described in Isaki (1983), Zakari
et al. (2020), Muhammad et al. (2022), Muhammad et al. (2021) and Mishra et al.

(2019) as;

y = ∑
iεS

yi/n, x = ∑
iεS

xi/n and xI = ∑
iεS′

xi/nI

s2
y =

1
(n−1)∑

iεS
(yi − y)2,s2

x =
1

(n−1)∑
iεS

(xi − x)2 and s
′2
x =

1
(n′−1) ∑

iεS′

(
xi − x′

)2

where the first sample of size n′ is denoted by S′; the second sample of size n is rep-
resented by S; y denotes the variable of interest defined on ith units and Y represents
the population average of the study variable; x denotes the auxiliary variable defined
on ith units; xI denotes the mean obtained from the primary sample of the auxiliary
variable; x denotes the mean obtained from the sub-sample of the auxiliary variable;
y denotes the mean obtained from the sub-sample of the study variable.

The following equations and notations are also defined:

λ =
(1

n −
1
N

)
, λ ′ =

( 1
n′ −

1
N

)
, Cy = Sy/Y , Cx = Sx/X , ρyx = Syx/(SySx), S2

y =

∑
N
i=1 (yi−Y)

2

N−1 , S2
x =

∑
N
i=1 (xi−X)

2

N−1 , Syx =
∑

N
i=1 (yi−Y)(xi−X)

N−1 , β ∗
2y = λ40 − 1, β ∗

2x = λ04 − 1
and λ ∗

22 = λ22 −1, λrs =
µrs√
µr

20µs
02

and µrs =
1
N ∑

N
j=1(Y j − Ȳ )r(X j − X̄)s

where n′, n, N, Y X , Syx, S2
x and S2

y remained as earlier defined; λ and λ ′ denote
the sampling fraction obtained from the respective units of the samples and popula-
tions; ρyx denote the coefficient of correlation between the variable of interest and
the secondary character; Cx and Cy represent the coefficients of variation obtained
from the study variable and the auxiliary variable, respectively; λrs is the population
coefficient of kurtosis; µrs is the moments about the mean; r and s are the order of
the moments (Mishra et al. 2019).
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Note;

MSE = Mean Square Error;

PRE =Percentage Relative Efficiency.

The usual unbiased estimator of variance is given as:

t0 =
1

n−1

n

∑
i=1

(yi − y)2 (1)

The expression for the variance of conventional unbiased estimator of variance (t0) is
given as:

Var(t0) = λS4
yβ

∗
2y (2)

Isaki (1983) proposed usual ratio estimator of the population variance using auxiliary
information under two-phase sampling as:

t1 = s2
y

(
s
′2
x

s2
x

)
(3)

Applying the first order of approximation, Isaki (1983) obtained the bias and mean
square error of the usual variance ratio estimator as:

Bias(t1)∼= S2
y

(
λ −λ

′
)
(β ∗

2x −λ
∗
22) (4)

MSE(t1)∼= S4
y

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x −2λ
∗
22)
]

(5)

Murthy (1964) proposed usual product estimator of the population variance using
auxiliary information under two-phase sampling as:

t2 = s2
y

(
s2

x

s′2x

)
(6)

Applying the first order of approximation, the bias and mean square error of the usual
variance product estimator is obtained as:

Bias(t2)∼= S2
y

(
λ −λ

′
)

λ
∗
22 (7)
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MSE(t2)∼= S4
y

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x +2λ
∗
22)
]

(8)

Singh et al. (1988) proposed usual difference estimator of the population variance
using auxiliary information under two-phase sampling as:

t3 = k1s2
y + k2(s

′2
x − s2

x) (9)

k1 and k2 denote the suitable chosen constants, whose values are to be obtained by
minimizing the mean square error. The optimum values of k1 and k2 along with the
minimum MSE equation of the estimator in (9), up to the first order of approximation
are given, respectively as:

kopt
1 =

β ∗
2x

β ∗
2x +β ∗

2yβ ∗
2x −λ ∗

22

kopt
2 =

S2
xλ ∗

22

S2
y

(
β ∗

2x +β ∗
2yβ ∗

2x −λ ∗
22

)
Bias(t3)∼= S2

y (k1 −1) (10)

MSE(t3)min ∼=
MSE(treg)min

1+ MSE(treg)min
S4

y

(11)

where MSE(treg)min ∼= S4
yλβ ∗

2y −
S4

y(λ−λ
′
)λ ∗

22
β ∗

2x
, S2

y , S2
x , β ∗

2y, and λ ∗
22 bear the same def-

inition given earlier. Applying exponential transformation to the usual regression,
Shabbir and Gupta (2007) proposed a regression cum exponential variance estimator
in two-phase sampling as:

t4 =
[
k3s2

y + k4
(
s′x

2 − s2
x
)]

exp

(
s
′2
x − s2

x

s′2x + s2
x

)
(12)

where k3 and k4 are unknown constants. The optimum values of k3 and k4 and the
minimized MSE of the usual variance regression estimator are obtained and given,
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respectively as:

kopt
3 =

β ∗
2x
8

(
8−β ∗

2x
β ∗

2x +β ∗
2yβ ∗

2x −λ ∗
22

)

kopt
4 =

S2
y

8S2
x

(
−4β ∗

2y +β ∗
2x +8λ ∗

22 −λ ∗
22β2x +4β ∗

2yβ ∗
2x −4λ ∗2

22

(β ∗
2x +β ∗

2yβ ∗
2x −λ ∗

22)

)

Bias(t4) = S2
y (k3 −1)+S2

yk3

(
λ −λ

′
)[3

8
β
∗
2x −

1
2

λ
∗
22

]
+

1
2

S2
xk4

(
λ −λ

′
)

β
∗
2x (13)

MSE(t4)min ∼=
MSE(treg)min

1+ MSE(treg)min
S4

y

−
(λ −λ

′
)β ∗

2x

[
MSE(treg)min +

(λ−λ
′
)S4

yβ ∗
2x

16

]
4
[
1+ MSE(treg)min

S4
y

] (14)

where S2
y , S2

x , β ∗
2y, β ∗

2x, λ ∗
22 λ , λ

′
and MSE(t2)min bear the same definition given ear-

lier.

Mishra et al. (2019) proposed four classes of estimators for estimating population
variance under two-phase sampling scheme using log-type transformation as:

Pl1 = s2
y +w0 log

(
s2

x

s′2x

)
(15)

Pl2 = s2
y (w1 +1)+w2 log

(
s2

x

s′2x

)
(16)

Pl3 =
[

s2
y (w3 +1)+w4 log

(
s2

x

s′2x

)]
exp

{
s
′2
x − s2

x

s′2x + s2
x

}
(17)

Pl4 = s2
y (w5 +1)+w6 log

(
s2

x

s′2x

)
exp

{
s
′2
x − s2

x

s′2x + s2
x

}
(18)

where w0, w1, w2, w3, w4, w5 and w6 are unknown parameters whose values depend
on the sample and population information. The bias and minimum mean square
error of the estimators along with the optimum values of the parameters are obtained,
respectively as:
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w0 =

[
−S2

yλ ∗
22

β ∗
2x

]
,

wopt
1 =

(A−C)D
D2 −AB

wopt
2 =

CB−D2

D2 −AB

wopt
3 =

C1B1 −D1E1

E2
1 −A1B1

wopt
4 =

A1D1 −C1E1

E2
1 −A1B1

wopt
5 =

C3B3 −D3E3

E2
3 −A3B3

wopt
6 =

A3D3 −C3E3

E2
3 −A3B3

Bias(Pl1)∼=
−S2

y

2
λ
∗
22

(
λ −λ

′
)

(19)

Bias(Pl2) = S2
y

[
(A−C)D
D2 −AB

]
(20)

Bias(Pl3)∼= (1+w3)S2
y

[(
λ −λ

′
)(3

8
β
∗
2x −

1
2

λ
∗
22

)]
− 1

2
w4

[(
λ −λ

′
)

β
∗
2x

]
(21)

Bias(Pl4)∼= S2
yw5 −

1
2

w6

[(
λ −λ

′
)

β
∗
2x

]
(22)

MSE(Pl1)min ∼= S4
y

[
λβ

∗
2y −

(
λ −λ

′
)

λ ∗
22

β ∗
2x

]
(23)

MSE(Pl2)min ∼=C+
BC2 +(A−2C)D2

D2 −AB
(24)

MSE(Pl3)min ∼= F1 +
B1C2

1 +A1D2
1 −2C1D2

1
E2

1 −A1B1
(25)
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MSE(Pl4)min ∼=C3 +
B3C2

3 +A3D2
3 −2C3D2

3

E2
3 −A3B3

(26)

where:

A = A1 = A3 = S4
y

(
1+λβ ∗

2y

)
, B = B1 = B3 =

(
λ −λ

′
)

β ∗
2x, C =C1 =C3 = S4

yλβ ∗
2y,

D = D3 = S2
y

(
λ −λ

′
)

λ ∗
22, D1 = S2

y

(
λ −λ

′
)(

λ ∗
22 −

β ∗
2x
2

)
, E1 = S2

y

(
λ −λ

′
)

(
λ ∗

22 −β ∗
2x
)
, F1 = S4

y

[
λβ ∗

2y +(λ −λ
′
)
(

β ∗
2x
4 −λ ∗

22

)]
and E3 = S2

y

(
λ −λ

′
)(

λ ∗
22 −

β ∗
2x
2

)
,

S2
y , S2

x , β ∗
2y, β ∗

2x, λ ∗
22 λ , λ

′
and MSE(t2)min bear the same definition given earlier.

3.3 Suggested Estimator
The proposed generalized estimator comprises of two components; where in the first
component, ratio and product are combined with a driving parameter, α1, and regres-

sion with a driving parameter, α2; as α1s2
y

[
1
2

(
s
′2
x

s2
x
+

s2
x

s′2x

)]β

+α2

(
s
′2
x − s2

x

)
. A linear

combination approach was adopted in combining the first component and the second

component: exp
(

s
′2
x −s2

x
s′2x +s2

x

)
to produce a generalized two-phase variance estimator as:

Ŝ2
di
=

α1s2
y

[
1
2

(
s
′2
x

s2
x
+

s2
x

s′2x

)]β

+α2

(
s
′2
x − s2

x

)exp

{
s
′2
x − s2

x

s′2x + s2
x

}
(27)

where, Ŝ2
di

is the notation for the new estimator such that, if α1 = 1 and α2 = 0;

the estimator becomes a ratio-product cum exponential estimator and, if α1 = 0 and
α2 = 1; the generalized new estimator becomes ratio-regression cum exponential
estimator. The parameter α1 and α2 are real numbers which minimized the MSE
of the estimator and β is a driving parameter suitably chosen. Thus, the following
relative error terms are defined to obtain the properties of the estimator:

s2
y = S2

y (1+ e0), s2
x = S2

x (1+ e1) and s
′2
x = S2

x (1+ e2)

where e0 denotes the relative error term corresponding to the study variable in the
second sample; e1 denotes the relative error term corresponding to the auxiliary vari-
able in the second sample; e2 denotes the relative error term corresponding to the
auxiliary variable in the first sample. Such that

E (e0) = E (e1) = E (e2) = 0
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E
(
e2

0
)
= λ

(
β2(y)−1

)
,E
(
e2

1
)
= λ

(
β2(x)−1

)
,E
(
e2

2
)
= λ

′ (
β2(x)−1

)
,

E (e0e1) = λ (λ22 −1) ,E (e0e2) = λ
′
(λ22 −1) ,E (e1e2) = λ

′ (
β2(x)−1

)
The new generalized estimator Ŝ2

di
can be expressed in terms of ei (i = 0, 1, 2) as:

Ŝ2
di
=

 α1S2
y (1+ e0)

1
2β

[
(1+ e2)(1+ e1)

−1 +(1+ e1)(1+ e2)
−1
]β

−α2
[
S2

x (1+ e2)−S2
x (1+ e1)

]


exp
{

S2
x (1+ e2)−S2

x (1+ e1)

S2
x (1+ e2)+S2

x (1+ e1)

}
(28)

By expanding (1+ e1)
−1 using Taylor series and ignoring the error terms that have

power greater than two, the equation (28) gives:

Ŝ2
di
=

{
α1S2

y (1+ e0)
1

2β

[
(1+ e2)

(
1− e1 + e2

1
)
+(1+ e1)

(
1− e2 + e2

2
)]β

−α2 (e2 − e1)S2
x

}

exp
{

S2
x (e2 − e1)

2S2
x +S2

x (e2 + e1)

}
(29)

Simplifying the RHS, evaluating out and ignoring the error terms that have power
greater than two, we get:

Ŝ2
di
=
{

α1S2
y (1+ e0)

1
2β

[
2+ e2

1 + e2
2 −2e1e2

]β −α2S2
x (e2 − e1)

}

exp

{
(e2 − e1)

2

[
1+

(e2 + e1)

2

]−1
}

(30)

Multiplying out the terms in the RHS of equation (30) and ignoring the error terms
that have power greater than two, we get:

Ŝ2
di
=
{

α1S2
y (1+ e0)

[
1+ βe2

1
2 +

βe2
2

2 −βe1e2

]
−α2S2

x (e2 − e1)
}

exp
{

e2

2
− e1

2
+

e2
1

4
−

e2
2

4

}
(31)

Apply the concept of exponential series to equation (31) and ignoring the error terms
that have power greater than two, the exponential component of (31), gives:
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Ŝ2
di
=
{

α1S2
y (1+ e0)

[
1+ βe2

1
2 +

βe2
2

2 −βe1e2

]
−α2S2

x (e2 − e1)
}

{
1+

e2

2
− e1

2
−

e2
2

8
+

3e2
1

8
− e1e2

4

}
(32)

Multiplying out the RHS of (32), ignoring the error terms that have power greater
than two and factorizing the similar terms, we get:

Ŝ2
d1
−S2

y =

{
(α1 −1)S2

y +α1S2
y
[
e0 − e1

2 + e2
2 +Ae2

1 +Be2
2 −

e0e1
2 + e0e2

2 −Ce1e2
]

+α2S2
x

[
e1 − e2 −

e2
1
2 − e2

2
2 + e1e2

] }
(33)

where Ai =
[

4β+3
8

]
, Bi =

[
4β−1

8

]
and Ci =

[
8β+1

8

]
Taking expectation of (33), the generalized new estimator’s bias is obtained as:

Bias
(

Ŝ2
di

)
=

{
(α1 −1)S2

y +α1S2
y

[(
Aiλ +Biλ

′ −Ciλ
′
)
(β2x −1)+ 1

2

(
λ

′ −λ

)
(λ22 −1)

]
+α2S2

x
1
2

(
λ

′ −λ

)
(β2x −1)

}
(34)

Squaring equation (33), ignoring the error terms that have power greater than two
and factorizing the similar terms, we get:

(
Ŝ2

di
−S2

y

)2
=



(α1 −1)2 S4
y +α2

1 S4
y

[
2e0 − e1 + e2 + e2

0 +
(8Ai+1)e2

1
4 +

(8Bi+1)e2
2

4

−2e0e1 +2e0e2 − (4Ci+1)e1e2
2

]
+α2

2 S4
x
(
e2

1 + e2
2 −2e1e2

)
−2α1α2S2

yS2
x(

e1 − e2 − e2
1 − e2

2 + e0e1 − e0e2 +2e1e2
)

−α1S4
y
(
e0 − e1

2 + e2
2 +Aie2

1 ++Bie2
2 −

e0e1
2 + e0e2

2 −Cie1e2
)

+α2S2
yS2

x

(
e1 − e2 −

e2
1
2 − e2

2
2 + e1e2

)


(35)

Taking expectation of (35), the MSE of the proposed estimator, up to the first order
of approximation, is given as:
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MSE
(

Ŝ2
di

)
=



(α1 −1)2 S4
y +α2

1 S4
y


λ (β2y −1)+ 1

4

(
[8Bi −8Ci −1]λ

′
+[8Ai +1]λ

)
(β2x −1)

+2
(

λ
′ −λ

)
(λ22 −1)


+α2

2 S4
x

(
λ

′ −λ

)
(β2x −1)+2α1α2S2

yS2
x

[(
λ

′ −λ

)
[(β2x −1)− (λ22 −1)]

]
−2α1S4

y

[(
Aiλ +(Bi −Ci)λ

′
)
(β2x −1)+ 1

2

(
λ

′ −λ

)
(λ22 −1)

]
−2α2S2

yS2
x

(
λ
′−λ

)
2 (β2x −1)


(36)

The new generalized estimator’s MSE expression is subsequently reduced to:

MSE
(

Ŝ2
di

)
= (α1 −1)2 S4

y +α2
1 S4

yDi +α2
2 S4

xEi +2α1α2S2
yS2

xFi −2α1S4
yGi −2α2S2

yS2
xHi (37)

where: Di = [λ (β2y −1)+ 1
4

(
[8Bi −8Ci −1]λ

′
+[8Ai +1]λ

)
(β2x −1)+2

(
λ

′ −λ

)
(λ22 −1),

Ei =
(

λ
′ −λ

)
(β2x −1), Fi =

(
λ

′ −λ

)
[(β2x −1)− (λ22 −1)], Gi =

[(
Aiλ +(Bi −Ci)λ

′
)
(β2x −1

)
+

1
2

(
λ

′ −λ

)
(λ22 −1), Hi =

1
2

(
λ

′ −λ

)
(β2x −1)

We obtain the optimum values of α1 and α2, by differentiating (37) partially with
respect to α1 and α2, and equating to zero, respectively as:

α
(opt)
1 =

(1+Gi)Ei −FiHi

(1+Di)Ei −F2
i

and

α
(opt)
2 =

S2
y

S2
x

[
(1+Di)Hi − (1+Gi)Fi

(1+Di)Ei −F2
i

]
The minimized new generalized estimator’s MSE is obtained by substituting the op-
timum values of α1 and α2 into equation (37), as:
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MSE
(

Ŝ2
di

)
min

= S4
y


1−

 (1+Di)
(
(Gi +1)2 E2

i −F2
i H2

i

)
+2(1+Gi)(

F2
i −DiEi −Ei

)
FiHi

+(1+2Di)EiH2
i − (1+Gi)

2 EiF2
i


[
(1+Di)Ei −F2

i
]2


(38)

Special Cases: For β = 1, the proposed estimator in equation (27) becomes

Ŝ2
d1
=

{
α1s2

y

[
1
2

(
s
′2
x

s2
x
+

s
′2
x

s′2x

)]
+α2

(
s
′2
x − s2

x

)}
exp

{
s
′2
x − s2

x

s′2x + s2
x

}
(39)

The optimum values of α1 and α2, of the proposed estimator in equation (39) are
obtain as:

α
(opt)
1 =

(1+G1)E1 −F1H1

(1+D1)E1 −F2
1

and

α
(opt)
2 =

S2
y

S2
x

[
(1+D1)H1 − (1+G1)F1

(1+D1)E1 −F2
1

]
The minimum MSE, up to the first order of approximation is obtained as:

MSE
(

Ŝ2
d1

)
min

= S4
y


1−

 (1+D1)
(
(G1 +1)2 E2

1 −F2
1 H2

1

)
+2(1+G1)(

F2
1 −D1E1 −E1

)
F1H1

+(1+2D1)E1H2
1 − (1+G1)

2 E1F2
1


[
(1+D1)E1 −F2

1
]2


(40)

When β = 2, the proposed estimator in equation (27) becomes

Ŝ2
d2
=

α1s2
y

[
1
2

(
s
′2
x

s2
x
+

s
′2
x

s′2x

)]2

+α2

(
s
′2
x − s2

x

)exp

{
s
′2
x − s2

x

s′2x + s2
x

}
(41)
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The optimum values of α1 and α2, of the proposed estimator in equation (41) are
obtain as:

α
(opt)
1 =

(1+G2)E2 −F2H2

(1+D2)E2 −F2
2

and

α
(opt)
2 =

S2
y

S2
x

[
(1+D2)H2 − (1+G2)F2

(1+D2)E2 −F2
2

]
The minimum mean squared error, up to the first order of approximation is obtained
as:

MSE
(

Ŝ2
d1

)
min

= S4
y


1−

 (1+D2)
(
(G2 +1)2 E2

2 −F2
2 H2

2

)
+2(1+G2)(

F2
2 −D2E2 −E2

)
F2H2

+(1+2D2)E2H2
2 − (1+G2)

2 E2F2
2


[
(1+D2)E2 −F2

2
]2


(42)

3.3 Efficiency Conditions of the Proposed Estimator
This section illustrates the performance of the proposed estimator over existing vari-
ance estimator, ratio estimator of variance, regression variance estimator and other
population variance estimators considered. The section also presents the conditions
under which the developed estimator is more precise, flexible and efficient than pop-
ulation variance estimators considered in this study.

Comparison between developed generalized estimator’s MSE and that of estimator
of sample variance:

Var(ŝ2
y)−MSE(Ŝ2

di
)min > 0, if

S4
yλ
(
β2y −1

)
−S4

y

(
1− K

M

)
> 0
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λ
(
β2y −1

)
−
(

1− K
M

)
> 0 (43)

where: K = (1+D2)
(
(G2 +1)2 E2

2 −F2
2 H2

2

)
+2(1+G2)

(
F2

2 −D2E2 −E2
)

F2H2+

(1+2D2)E2H2
2 − (1+G2)

2 E2F2
2 M =

[
(1+D2)E2 −F2

2
]2

If condition I, in Eq. 43, is satisfied, then the new generalized estimator is better and
more efficient than the estimator of sample variance.

Comparison between the new generalized estimator’s MSE and that of existing ratio
variance estimator defined by Isaki (1983):

MSE(t1)−MSE(Ŝ2
di
)min > 0, if

S4
y

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x −2λ
∗
22)
]
−S4

y

(
1− K

M

)
> 0

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x −2λ
∗
22)
]
−
(

1− K
M

)
> 0 (44)

If condition II, in Eq. 44, is satisfied, then the new generalized estimator is better and
more efficient than the ratio estimator defined by Isaki (1983).

Comparison between the new generalized estimator’s MSE and that of existing prod-
uct variance estimator defined by Murthy (1964):

MSE(t2)−MSE(Ŝ2
di
)min > 0, if

S4
y

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x +2λ
∗
22)
]
−S4

y

(
1− K

M

)
> 0

[
λβ

∗
2y +

(
λ −λ

′
)
(β ∗

2x +2λ
∗
22)
]
−
(

1− K
M

)
> 0 (45)

If condition III, in Eq. 45, is satisfied, then the new generalized estimator is better
and more efficient than the product estimator defined by Murthy (1964).

Comparison between the new generalized estimator’s MSE and that of existing dif-

89



Generalized Ratio-Product cum Regression Variance Estimator in Two-Phase
Sampling Isah

ference variance estimator defined by Singh et al. (1988):

MSE(t3)min −MSE(Ŝ2
di
)min > 0, if

S4
y

 MSE(treg)min

1+ MSE(treg)min
S4

y

−S4
y

(
1− K

M

)
> 0

 MSE(treg)min

1+ MSE(treg)min
S4

y

−(1− K
M

)
> 0 (46)

If condition IV, in Eq. 46, is satisfied, then the new generalized estimator is better and
more efficient than the difference variance estimator defined by Singh et al. (1988).

Comparison between the new generalized estimator’s MSE and that of modified vari-
ance estimator defined by Shabbir and Gupta (2007):

MSE(t3)min −MSE(Ŝ2
di
)min > 0, if

 MSE(treg)min

1+ MSE(treg)min
S4

y

−
(λ −λ

′
)β ∗

2x

[
MSE(treg)min +

(λ−λ
′
)S4

yβ ∗
2x

16

]
4
[
1+ MSE(treg)min

S4
y

]
−(1− K

M

)
> 0

(47)

If condition V, in Eq. 47, is satisfied, then the new generalized estimator is better and
more efficient than the modified variance estimator defined by Shabbir and Gupta
(2007).

Comparing the proposed estimator’s MSE with that of ratio exponential variance
estimators defined by Mishra et al (2019), we have:

MSE(Pl1)min −MSE(Ŝ2
di
)min > 0, if

S4
y

[
λβ

∗
2y −

(
λ −λ

′
)

λ ∗
22

β ∗
2x

]
−S4

y

(
1− K

M

)
> 0

[
λβ

∗
2y −

(
λ −λ

′
)

λ ∗
22

β ∗
2x

]
−
(

1− K
M

)
> 0 (48)
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If condition VI, in Eq. 48, is satisfied, then the new generalized estimator is better
and more efficient than the first modified variance estimator defined by Mishra et al.

(2019).

MSE(Pl2)min −MSE(Ŝ2
di
)min > 0, if[

C+
BC2 +(A−2C)D2

D2 −AB

]
−
(

1− K
M

)
> 0 (49)

If condition VII, in Eq. 49, is satisfied, then the new generalized estimator is better
and more efficient than the second modified variance estimator defined by Mishra et

al. (2019).

MSE(Pl3)min −MSE(Ŝ2
di
)min > 0, if[

F1 +
B1C2

1 +A1D2
1 −2C1D2

1
E2

1 −A1B1

]
−
(

1− K
M

)
> 0 (50)

If condition VIII, in Eq. 50, is satisfied, then the new generalized estimator is better
and more efficient than the third modified variance estimator defined by Mishra et al.

(2019).

MSE(Pl4)min −MSE(Ŝ2
di
)min > 0, if[

C3 +
B3C2

3 +A3D2
3 −2C3D2

3

E2
3 −A3B3

]
−
(

1− K
M

)
> 0 (51)

If condition IX, in Eq. 51, is satisfied, then the new generalized estimator is better
and more efficient than the fourth modified variance estimator defined by Mishra et

al. (2019).

4. Results and Discussion

This section presents the empirical result of the study. Five datasets were used to
evaluate the efficiencies of the proposed estimator over other estimators considered
in this paper. The MSE and percentage relative efficiencies (PREs) were obtained
using dataset I, II, III, IV and V by substituting the parameters of the datasets into the
MSE equation of the proposed and existing estimators. The PRE were obtained using
relationship between the variance of sample mean and MSE values of the proposed
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and existing estimators.

Table 2: Estimators’ Bias
Estimators Dataset I Dataset II Dataset

III
Dataset
IV

Dataset V

Usual Variance (t0) - - - - -
Isaki (1983) Classical Ratio (t1) 13.433 4344.903 41.574 70.586 250.428
Murthy (1964) Classical Product (t2) 29.233 236.295 19.269 63.802 414.798
Singh et al. (1988) (t3) -130.614 -10109.400 -331.227 -449.594 -2249.425
Shabbir and Gupta (2007) (t4) -153.791 -11977.010 -66.629 505.011 -2618.417
Mishra et al. (2019) Estimator (Pl1) 14.617 2180.476 59.646 121.901 207.399
Mishra et al. (2019) Estimator (Pl2) -49.560 -6065.220 -84.511 -129.361 -310.850
Mishra et al. (2019) Estimator (Pl3) -45.002 -2528.050 -81.370 -136.429 -610.107
Mishra et al. (2019) Estimator (Pl4) -45.711 -3526.030 -88.474 -147.163 -591.052
Proposed Estimator (Ŝ2

d1
) -13.324 -158.087 -17.155 -63.637 -177.560

Proposed Estimator (Ŝ2
d2
) -7.496 -155.171 -16.172 -62.451 -119.935

Table 2 presents the results of the bias of the existing and proposed generalized esti-
mators using datasets I, II, III, IV and V. Based on the results obtained from Dataset
I, it is observed that the proposed generalized ratio-product cum regression-type es-
timators; Ŝ2

d1
and Ŝ2

d2
(-13.324 and -7.496), respectively, minimizes the bias values

compared to the Isaki (1983) classical ratio (13.433); Murthy (1964) classical prod-
uct (29.233); Singh et al., (1988) estimator (-130.614); Shabbir and Gupta (2007)
ratio-regression-type estimator (-153.791) and Mishra et al., (2019) ratio estima-
tors (14.617, -49.560, -45.002 and -45.711), respectively. The results obtained from
Dataset II revealed that the proposed generalized ratio-product cum regression-type
estimators; Ŝ2

d1
and Ŝ2

d2
(-158.087 and -155.171) , respectively, minimizes the bias

values compared to the Isaki (1983) classical ratio (4344.903); Murthy (1964) clas-
sical product (236.295); Singh et al., (1988) estimator (-10109.400); Shabbir and
Gupta (2007) ratio-regression-type estimator (-11977.010) and Mishra et al., (2019)
ratio estimators (2180.476, -6065.220, -2528.050 and -3526.030), respectively. Sim-
ilarly, the results obtained from dataset III revealed that the proposed generalized
ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(-17.155 and -16.172) ,

respectively, minimizes the bias values compared to the Isaki (1983) classical ratio
(49.574); Murthy (1964) classical product (19.269); Singh et al., (1988) estimator
(-331.227); Shabbir and Gupta (2007) ratio-regression-type estimator (-66.629) and
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Mishra et al., (2019) ratio estimators (59.646, -84.511, -81.370 and -88.474), respec-
tively. Also, the results obtained from dataset IV signifies that the proposed general-
ized ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(-63.637 and -62.451)

, respectively, minimizes the bias values compared to the Isaki (1983) classical ratio
(70.586); Murthy (1964) classical product (63.802); Singh et al., (1988) estimator
(-449.594); Shabbir and Gupta (2007) ratio-regression-type estimator (505.011) and
Mishra et al., (2019) ratio estimators (121.901, -129.361, -136.429 and -147.163),
respectively. Further, the results obtained from dataset V revealed that the proposed
generalized ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(-177.560 and

-119.935) , respectively, minimize the bias values compared to the Isaki (1983) clas-
sical ratio (250.428); Murthy (1964) classical product (414.798); Singh et al., (1988)
estimator (-2249.425); Shabbir and Gupta (2007) ratio-regression-type estimator (-
2618.417) and Mishra et al., (2019) ratio estimators (207.399, -310.850, -610.107
and -591.052), respectively.

Therefore, the results indicate that the special classes of the proposed generalized
estimator possessed the minimum bias in comparison with the existing estimators.
Further, the results showed greater gains by the special classes of the proposed es-
timator over existing ones in situation where the study and auxiliary variables are
negatively correlated (dataset III and V), and where they are positively correlated
(dataset I, II and IV).

Table 3 presents the results of the MSE of some existing and proposed generalized
estimators using datasets I, II, III, IV and V. Based on the results obtained from
Dataset I, it is observed that the proposed generalized ratio-product cum regression-
type estimators; Ŝ2

d1
and Ŝ2

d2
(3218.826 and 1888.781), respectively, have minimum

MSE values compared to the usual variance (9286.713); Isaki (1983) classical ratio
(5894.493); Murthy (1964) classical product (30998.810); Singh et al., (1988) esti-
mator (6500.175); Shabbir and Gupta (2007) ratio-regression-type estimator
(6192.213) and Mishra et al., (2019) ratio estimators (4986.558, 4499.742, 4431.230
and 3787.798), respectively.
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Table 3: Mean Square Errors
Estimators Dataset I Dataset II Dataset III Dataset IV Dataset V
Usual Variance (t0) 9286.713 46584427.000 37511.482 93891.915 2206658.000
Isaki (1983) Classical Ratio
(t1)

5894.493 97443119.000 46699.414 110988.323 901273.800

Murthy (1964) Classical
Product (t2)

30998.810 109143104.000 78448.803 222823.806 6845466.000

Singh et al. (1988) (t3) 6500.175 46151619.000 35381.320 82190.662 1520040.000
Shabbir and Gupta (2007)
(t4)

6192.213 42617938.000 34252.375 78956.410 1472894.000

Mishra et al. (2019) Estima-
tor (Pl1)

4986.558 46433557.000 34997.722 83185.784 881690.700

Mishra et al. (2019) Estima-
tor (Pl2)

4499.742 35634961.000 29013.426 69081.414 825016.305

Mishra et al. (2019) Estima-
tor (Pl3)

4431.230 34932834.000 28912.620 66300.387 787613.412

Mishra et al. (2019) Estima-
tor (Pl4)

3787.798 34257837.000 27639.360 64315.864 703163.134

Proposed Estimator (Ŝ2
d1
) 3218.826 24781026.000 24173.932 55359.893 648085.511

Proposed Estimator (Ŝ2
d2
) 1888.781 13368041.000 19942.831 42865.790 455801.917

The results obtained from dataset II also revealed that the proposed generalized ratio-
product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(24781026.0 and 13368041.0),

respectively, have minimum MSE values compared to the usual variance
(46584427.0); Isaki (1983) classical ratio (97443119.0); Murthy (1964) classical
product (109143104.0); Singh et al., (1988) estimator (46151619.0); Shabbir and
Gupta (2007) ratio-regression-type estimator (42617938.0) and Mishra et al., (2019)
ratio estimators (46433557.0, 35634961.0, 34932834.0 and 34257837.0), respec-
tively. Also, the results obtained from Dataset III revealed that the proposed gen-
eralized ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(24173.932 and

19942.831), respectively, have minimum mean square error values compared to the
usual variance (37511.482); Isaki (1983) classical ratio (46699.414); Murthy (1964)
classical product (78448.803); Singh et al., (1988) estimator (35381.320); Shab-
bir and Gupta (2007) ratio-regression-type estimator (34252.375) and Mishra et al.,

(2019) ratio estimators (34997.722, 29013.426, 28912.620 and 27639.360), respec-
tively. The results obtained from Dataset IV signifies that the proposed generalized
ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(55359.893 and 42865.790),
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respectively, have minimum MSE values compared to the usual variance (93891.915);
Isaki (1983) classical ratio (110988.323); Murthy (1964) classical product
(222823.806); Singh et al., (1988) estimator (82190.662); Shabbir and Gupta (2007)
ratio-regression-type estimator (78956.410) and Mishra et al., (2019) ratio estimators
(83185.784, 69081.414, 66300.387 and 64315.864), respectively.

Further, the results obtained from Dataset V revealed that the proposed generalized
ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(648085.511 and

455801.917), respectively, have minimum MSE values compared to the usual vari-
ance (2206658.0); Isaki (1983) classical ratio (901273.80); Murthy (1964) classi-
cal product (6845466.0); Singh et al., (1988) estimator (1520040.0); Shabbir and
Gupta (2007) ratio-regression-type estimator (1472894.0) and Mishra et al., (2019)
ratio estimators (881690.70, 825016.305, 787613.412 and 703163.134), respectively.
Therefore, the results obtained from I, II, III, IV and V indicate that the special
classes of the proposed generalized estimator possessed the minimum MSE in com-
parison with the existing estimators. The special classes of the proposed estimator
perform better based on the MSE when the study and auxiliary variables are nega-
tively correlated (dataset III and V), and when they are positively correlated (dataset
I, II and IV).

The results of the PRE of the existing and proposed generalized estimators using
datasets I, II, III, IV and V are presented in Table 4. Based on the results ob-
tained from dataset I, it is observed that the proposed generalized ratio-product cum
regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(288.512 and 491.678), respectively, have the

highest PRE values compared to the usual variance (100.0); Isaki (1983) classical ra-
tio (157.549); Murthy (1964) classical product (29.958); Singh et al., (1988) estima-
tor (142.869); Shabbir and Gupta (2007) ratio-regression-type estimator (149.974)
and Mishra et al., (2019) ratio estimators (186.235, 206.383, 209.574 and 245.175),
respectively. The results obtained from dataset II also revealed that the proposed
generalized ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(187.984 and

348.476), respectively, have the highest PRE values compared to the usual vari-
ance (100.0); Isaki (1983) classical ratio (47.807); Murthy (1964) classical prod-
uct (42.682); Singh et al., (1988) estimator (100.938); Shabbir and Gupta (2007)
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ratio-regression-type estimator (109.307) and Mishra et al., (2019) ratio estimators
(100.325, 130.727, 133.354 and 135.982), respectively.

Table 4: Estimates of the Percentage Relative Efficiency
Estimators Dataset I Dataset

II
Dataset
III

Dataset
IV

Dataset
V

Usual Variance (t0) 100.000 100.000 100.000 100.000 100.000
Isaki (1983) Classical Ratio (t1) 157.549 47.807 80.325 84.596 244.838
Murthy (1964) Classical Product (t2) 29.958 42.682 47.817 42.137 32.235
Singh et al. (1988) (t3) 142.869 100.938 106.021 114.237 145.171
Shabbir and Gupta (2007) (t4) 149.974 109.307 109.515 118.916 149.818
Mishra et al. (2019) Estimator (Pl1) 186.235 100.325 107.183 112.870 250.276
Mishra et al. (2019) Estimator (Pl2) 206.383 130.727 129.290 135.915 267.468
Mishra et al. (2019) Estimator (Pl3) 209.574 133.354 129.741 141.616 280.170
Mishra et al. (2019) Estimator (Pl4) 245.175 135.982 135.718 145.986 313.819
Proposed Estimator (Ŝ2

d1
) 288.512 187.984 155.173 169.603 340.489

Proposed Estimator (Ŝ2
d2
) 491.678 348.476 188.095 219.037 484.127

More so, the results obtained from Dataset III revealed that the proposed generalized
ratio-product cum regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(155.173 and 188.095),

respectively, have the highest PRE values compared to the usual variance (100.0);
Isaki (1983) classical ratio (80.325); Murthy (1964) classical product (47.817); Singh
et al., (1988) estimator (106.021); Shabbir and Gupta (2007) ratio-regression-type
estimator (109.515) and Mishra et al., (2019) ratio estimators (107.183, 129.290,
129.741 and 135.718), respectively. The results obtained from Dataset IV signifies
that the proposed generalized ratio-product cum regression-type estimators; Ŝ2

d1
and

Ŝ2
d2

(169.603 and 219.037), respectively, have the highest PRE values compared to
the usual variance (100.0); Isaki (1983) classical ratio (84.596); Murthy (1964) clas-
sical product (42.137); Singh et al., (1988) estimator (114.237); Shabbir and Gupta
(2007) ratio-regression-type estimator (118.916) and Mishra et al., (2019) ratio es-
timators (112.870, 135.915, 141.616 and 145.986), respectively. Further, the results
obtained from Dataset V revealed that the proposed generalized ratio-product cum
regression-type estimators; Ŝ2

d1
and Ŝ2

d2
(340.489 and 484.127), respectively, have the

highest PRE values compared to the usual variance (100.0); Isaki (1983) classical ra-
tio (244.838); Murthy (1964) classical product (32.235); Singh et al., (1988) estima-
tor (145.171); Shabbir and Gupta (2007) ratio-regression-type estimator (149.818)
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and Mishra et al., (2019) ratio estimators (250.276, 267.468, 280.170 and 313.819),
respectively.

Therefore, the results obtained from dataset I, II, III, IV and V show that the special
classes of the proposed generalized estimator possessed higher PRE in comparison
with the existing estimators. Thus, the special classes of the proposed estimator
showed greater gains in efficiency when the study and auxiliary variables are nega-
tively correlated (dataset III and V), and when they are positively correlated (dataset
I, II and IV).

5. Conclusion and Policy Implication
5.1 Conclusion
Controlling the variation of phenomena such as oil and gas prices, inflation and ex-
change rates, unemployment rate and so on is difficult in application and this has
received attentions of many researchers. This study under two-phase sampling sug-
gests a new generalized ratio-product cum regression-type estimator with some spe-
cial classes that provides efficient and precise estimation of phenomena variation for
better policy formulation. The new generalized estimator is obtained by applying a
linear combination approach, power transformation and exponentiation strategy to
some existing estimators. The properties and theoretical efficiency conditions of the
new generalized estimator are derived up to first degree of approximation. The MSE
and PRE of the proposed and some existing estimators are compared empirically us-
ing five real datasets. Evidence suggests that the classes of the proposed estimator
perform better in terms of bias, MSE and PRE compared to existing estimators in the
literature.

5.2 Policy Implication
The findings of this study are relevant for policy makers and industry analysts. The
findings could be helpful by providing better variation estimates for various phenom-
ena such as inflation, exchange rate, standard of living among other macro fundamen-
tals for better policy-making. Also, real-world problems like estimating how income
varies across different society, or how the number of deaths from a particular disease
varies over a decade, or how the contribution to pollution varies among different
types of industries over time, and so on can be solved by the proposed estimator.
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For future work, the estimator can be modified by considering multi-auxiliary vari-
ables to enhance its precision and efficiency, since supplementary information has
proven to enhance the precision and flexibility of estimators.
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